Emission of dislocations from nanovoids under combined loading
نویسنده
چکیده
Among all directions available for dislocation emission from the surface of a cylindrical circular void, the direction of the most likely emission is determined. It is shown that this direction is different from the direction of the maximum shear stress at the surface of the void due to the applied loading. The critical stress and the direction of the dislocation emission are determined for circular nanovoids under remote uniaxial, pure shear, and arbitrary biaxial loading. The analysis includes effects of the loading orientation relative to the discrete slip plane orientation. It is shown that dislocations are emitted more readily from larger nanovoids and that wider dislocations are emitted under lower applied stress than narrow dislocations. Different mechanisms, under much lower stress, operate for growth of the micron-size voids. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Growth and Collapse of Nanovoids in Tantalum Monocrystals Loaded at High Strain Rate
Shock-induced spall in ductile metals is known to occur by the sequence of nucleation, growth and coalescence of voids, even in high purity monocrystals. However, the atomistic mechanisms involved are still not completely understood. The growth and collapse of nanoscale voids in tantalum are investigated under different stress states and strain rates by molecular dynamics (MD) simulations. Thre...
متن کاملShock-induced structural phase transition, plasticity, and brittle cracks in aluminum nitride ceramic.
Atomistic mechanisms of fracture accompanying structural phase transformation (SPT) in AlN ceramic under hypervelocity impact are investigated using a 209 x 10(6) atom molecular-dynamics simulation. The shock wave generated by the impact splits into an elastic wave and a slower SPT wave that transforms the wurtzite structure into the rocksalt phase. The interaction between the reflected elastic...
متن کاملDamage-tolerant nanotwinned metals with nanovoids under radiation environments
Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a...
متن کاملHealth Monitoring for Composite under Low-Cycle Cyclic Loading, Considering Effects of Acoustic Emission Sensor Type
Composites have been widely used in the aerospace industry. Due to the requirement of a high safety for such structures, they could be considered for health monitoring. The acoustic emission approach is one of most effective methods for identifying damages in composites. In this article, standard specimens were made from carbon fibers and the epoxy resin, with the [03/902/...
متن کاملInteraction and coalescence of nanovoids and dynamic fracture in silica glass: multimillion-to-billion atom molecular dynamics simulations
In this review, we present our recent results for atomistic mechanisms of damage nucleation and growth and dynamic fracture in silica glass. These results have been obtained with multimillion-to-billion atom, parallel, molecular dynamics simulations of (1) the interaction and coalescence of nanovoids in amorphous silica subjected to dilatational strain and (2) the nucleation, growth and healing...
متن کامل